C-GRAAL: common-neighbors-based global GRAph ALignment of biological networks.

نویسندگان

  • Vesna Memišević
  • Nataša Pržulj
چکیده

Networks are an invaluable framework for modeling biological systems. Analyzing protein-protein interaction (PPI) networks can provide insight into underlying cellular processes. It is expected that comparison and alignment of biological networks will have a similar impact on our understanding of evolution, biological function, and disease as did sequence comparison and alignment. Here, we introduce a novel pairwise global alignment algorithm called Common-neighbors based GRAph ALigner (C-GRAAL) that uses heuristics for maximizing the number of aligned edges between two networks and is based solely on network topology. As such, it can be applied to any type of network, such as social, transportation, or electrical networks. We apply C-GRAAL to align PPI networks of eukaryotic and prokaryotic species, as well as inter-species PPI networks, and we demonstrate that the resulting alignments expose large connected and functionally topologically aligned regions. We use the resulting alignments to transfer biological knowledge across species, successfully validating many of the predictions. Moreover, we show that C-GRAAL can be used to align human-pathogen inter-species PPI networks and that it can identify patterns of pathogen interactions with host proteins solely from network topology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-GRAAL: Lagrangian graphlet-based network aligner

MOTIVATION Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, ...

متن کامل

GEDEVO: An Evolutionary Graph Edit Distance Algorithm for Biological Network Alignment

Introduction: With the so-called OMICS technology the scientific community has generated huge amounts of data that allow us to reconstruct the interplay of all kinds of biological entities. The emerging interaction networks are usually modeled as graphs with thousands of nodes and tens of thousands of edges between them. In addition to sequence alignment, the comparison of biological networks h...

متن کامل

Integrative network alignment reveals large regions of global network similarity in yeast and human

MOTIVATION High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising effic...

متن کامل

Supplementary Material: C–GRAAL: Common–Neighbors–Based Global GRAph ALignment of Biological Networks†

To determine topological similarity between two nodes in different networks, we use the similarity measure of nodes’ local neighborhoods, as described by Milenković and Pržulj1. This measure generalizes the degree of a node, which counts the number of edges that the node touches, into the vector of graphlet degrees, that counts the number of graphlets that the node touches, for all 2-5-node gra...

متن کامل

Detection of Fake Accounts in Social Networks Based on One Class Classification

Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative biology : quantitative biosciences from nano to macro

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2012